TRANSFORMADA DE LAPLACE INVERSA Y DE DERIVADAS

TRANSFORMADA DE LAPLACE INVERSA Y DE DERIVADAS


Apunte
EDO Laplace Inversa Derivada Ejercicios

Propiedades de la transformada de Laplace

  1. Sea f(t)f(t) una funciΓ³n definida para t>0t>0, si:

    L[ f(x) ]=F(s)∧L[ g(x) ]=G(s)\mathscr{L}[~f(x)~]=F(s) \quad\land\quad \mathscr{L}[~g(x)~]=G(s) L[ c1 f(x)+c2 g(x) ]=c1 L[ f(x) ]+c2 L[ g(x) ]=c1 F(s)+c2 G(s)\begin{split} \mathscr{L}[~c_1\,f(x)+c_2\,g(x)~]&= c_1\,\mathscr{L}[~f(x)~]+c_2\,\mathscr{L}[~g(x)~]\\ &=c_1\,F(s)+c_2\,G(s) \end{split}
  2. Si L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s), entonces para alguna constante aa

    L[ eaxf(x) ]=F(sβˆ’a)\mathscr{L}[~e^{ax}f(x)~]=F(s-a)
  3. Si L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s), entonces βˆ€β€‰n∈Z+\forall \,n\in \Z^+

    L[ xnf(x) ]=(βˆ’1)n dndsn [ F(s) ]\mathscr{L}[~x^{n}f(x)~]=(-1)^n \,\frac{d^n}{ds^n} \,[~F(s)~]
  4. Si L[ f(x) ]=F(s)\mathscr{L}[~f(x)~]=F(s), y si lim⁑xβ†’0f(x)xβ€…β€Š:β€…β€Šx>0\displaystyle\lim_{x\to0} \frac{f(x)}{x}\;:\; x>0 existe, entonces:

    L[ 1x f(x) ]=∫s∞F(t) dt\mathscr{L}[~\frac{1}{x}\,f(x)~]=\int\limits_{s}^{\infty} F(t)\,dt
  5. Si f(x)f(x) es periΓ³dico con periodo Ο‰\omega, esto es, f(x+Ο‰)=f(x)f(x+\omega)=f(x), entonces:

    L[ f(x) ]=∫s∞eβˆ’sxf(x) dx1βˆ’eβˆ’Ο‰s\mathscr{L}[~f(x)~]=\cfrac{\int_{s}^{\infty} e^{-sx}f(x)\, dx}{1-e^{-\omega s}}

Transformada inversa

Sea f(t)f(t) una funciΓ³n definida para t>0t>0, ademas sabemos la definiciΓ³n de la transformada de Laplace:

L[f(t)]=F(s):=∫0∞eβˆ’st f(t) dt\mathscr{L}[f(t)]=F(s) :=\int\limits_{0}^{\infty} e^{-st}\,f(t)\,dt

Entonces la transformada inversa de Laplace:

Lβˆ’1[F(s)]=f(t)\mathscr{L}^{-1}[F(s)]=f(t)

Transformada inversa de Laplace de funciones elementales

  • L\mathscr{L} y Lβˆ’1\mathscr{L}^{-1} son operaciones inversas
  F(s)  βŸΆ  f(t)=Lβˆ’1[ F(s) ]  \boxed{~~F(s)~~} \qquad\longrightarrow\qquad \boxed{~~f(t)=\mathscr{L}^{-1}[\,F(s)\,]~~} 1s⟢1\frac{1}{s} \qquad\qquad\longrightarrow\qquad\qquad 1 1s2⟢t\frac{1}{s^2} \qquad\qquad\longrightarrow\qquad\qquad t 2!s3⟢t2\frac{2!}{s^3} \qquad\qquad\longrightarrow\qquad\qquad t^2 n!sn+1⟢tn\frac{n!}{s^{n+1}} \qquad\qquad\longrightarrow\qquad\qquad t^n 1sβˆ’a⟢eat\frac{1}{s-a} \qquad\qquad\longrightarrow\qquad\qquad e^{at} as2+a2⟢sin⁑(at)\frac{a}{s^2+a^2} \qquad\qquad\longrightarrow\qquad\qquad \sin(at) ss2+a2⟢cos⁑(at)\frac{s}{s^2+a^2} \qquad\qquad\longrightarrow\qquad\qquad \cos(at) as2βˆ’a2⟢sinh⁑(at)\frac{a}{s^2-a^2} \qquad\qquad\longrightarrow\qquad\qquad \sinh(at) ss2βˆ’a2⟢cosh⁑(at)\frac{s}{s^2-a^2} \qquad\qquad\longrightarrow\qquad\qquad \cosh(at)

Transformadas de derivadas

Si fβ€²(t)f'(t) es continua cuando tβ‰₯0t \geq 0, asumiendo que eβˆ’stf(t)β†’0e^{-st}f(t)\rightarrow 0 cuando tβ†’βˆžt\rightarrow\infty entonces:

L[ fβ€²(t) ]=∫0∞eβˆ’st fβ€²(t) dt=eβˆ’stf(t)∣0∞+s∫0∞eβˆ’st f(t) dt=βˆ’f(0)+s L[ f(t) ]\begin{align*} \mathscr{L}[~f'(t)~]&=\int\limits_{0}^{\infty} e^{-st}\,f'(t)\,dt\\ &=e^{-st}f(t) \Big|_{0}^\infty + s\int\limits_{0}^{\infty} e^{-st}\,f(t)\,dt\\ &=-f(0)+s\,\mathscr{L}[~f(t)~] \end{align*}

Entonces:

L[ fβ€²(t) ]=sF(s)βˆ’f(0)L[ fβ€²β€²(t) ]=s2F(s)βˆ’sf(0)βˆ’fβ€²(0)L[ fβ€²β€²β€²(t) ]=s3F(s)βˆ’s2f(0)βˆ’sfβ€²(0)βˆ’fβ€²β€²(0)\begin{align} \mathscr{L}[~f'(t)~]&=sF(s){\color{magenta}-f(0)} \\ \mathscr{L}[~f''(t)~]&= s^2F(s)-sf(0){\color{magenta}-f'(0)}\\ \mathscr{L}[~f'''(t)~]&=s^3F(s)-s^2f(0)-sf'(0){\color{magenta}-f''(0)}\\ \end{align}
  • Tiene una naturaleza recursiva

Teorema

L[ fn(t) ]=snF(s)βˆ’snβˆ’1f(0)βˆ’snβˆ’2fβ€²(0)βˆ’β‹―βˆ’fnβˆ’1(0)\mathscr{L}[~f^n(t)~] =s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots{\color{magenta}-f^{n-1}(0)}

Sii f,fβ€²,fβ€²β€²,…,fnβˆ’1f,f',f'',\dots,f^{n-1} son continuas en tβ‰₯0t\geq0 y de orden exponencial, y si fnf^{n} es continua por tramos en t>0t>0

Derivada de una transformada

Si L[ f(t) ]=F(s)\mathscr{L}[~f(t)~]=F(s), entonces:

L[ t f(t) ]=βˆ’ddsL[ f(t) ]=βˆ’dFds=βˆ’Fβ€²(s)\mathscr{L}[~t\,f(t)~]=-\frac{d}{ds}\mathscr{L}[~f(t)~]=-\frac{dF}{ds}=-F'(s)

Ejercicios

  1. Calcular:

    Lβˆ’1[4sβˆ’6(sβˆ’1)(sβˆ’2)(sβˆ’3)]\mathscr{L}^{-1}\left[ \frac{4s-6}{(s-1)(s-2)(s-3)} \right]

    Utilice fracciones parciales

Solución 🎁
  • Para:

    4sβˆ’6(sβˆ’1)(sβˆ’2)(sβˆ’3)\frac{4s-6}{(s-1)(s-2)(s-3)}
  • Se tiene:

    A(sβˆ’1)+B(sβˆ’2)+C(sβˆ’3)\frac{A}{(s-1)}+\frac{B}{(s-2)}+\frac{C}{(s-3)}
  • Finalmente:

    Lβˆ’1[4sβˆ’6(sβˆ’1)(sβˆ’2)(sβˆ’3)]=βˆ’etβˆ’2e2t+3e3t\mathscr{L}^{-1}\left[ \frac{4s-6}{(s-1)(s-2)(s-3)} \right] = -e^t-2e^{2t}+3e^{3t}
  1. Dada:

    L[ sin⁑(t) ]=1s2+1\mathscr{L}[~\sin(t)~]=\frac{1}{s^2+1}

    Usar transformada de la derivada para obtener L[ cos⁑(t) ]\mathscr{L}[~\cos(t)~]

Solución 🎁
  • Sea:

    f(t)=cos⁑(t)f(t)=\cos(t)
  • Entonces:

    fβ€²(t)=βˆ’sin⁑(t)∧f(0)=1{\color{magenta}f'(t)=-\sin(t)}\quad\land\quad {\color{green}f(0)=1}
  • Aplicando la transformada sobre fβ€²f':

    L[ fβ€²(t) ]=Fβ€²(s)L[ βˆ’sin⁑(t) ]=s L[ cos⁑(t) ]βˆ’f(0)1βˆ’L[ sin⁑(t) ]=s L[ cos⁑(t) ]L[ cos⁑(t) ]=1βˆ’L[ sin⁑(t) ]s=1s(1βˆ’1s2+1)=1s(s2+1βˆ’1s2+1)=ss2+1\begin{align*} \mathscr{L}[~{\color{magenta}f'(t)}~]&=F'(s)\\ \mathscr{L}[~{\color{magenta}-\sin(t)}~] &= s\,\mathscr{L}[~\cos(t)~]\color{green}-f(0)\\ 1-\mathscr{L}[~\sin(t)~] &=s\,\mathscr{L}[~\cos(t)~] \\ \mathscr{L}[~\cos(t)~] &=\frac{1-\mathscr{L}[~\sin(t)~]}{s}\\ &=\frac{1}{s} \left( 1-\frac{1}{s^2+1} \right)\\ &=\frac{1}{s} \left( \frac{s^2+1-1}{s^2+1} \right)\\ &=\frac{s}{s^2+1} \end{align*}
  1. Encontrar:

    L[ t cos⁑(Ο‰t) ]\mathscr{L}[~t\,\cos(\omega t)~]

    Usar derivada de la transformada

Solución 🎁
  • Se sabe que:

    L[ cos⁑(Ο‰t) ]=ss2+Ο‰2\mathscr{L}[~\cos(\omega t)~]=\frac{s}{s^2+\omega^2}
  • Entonces:

    L[ t cos⁑(Ο‰t) ]=βˆ’dds(ss2+Ο‰2)\mathscr{L}[~t\,\cos(\omega t)~]=-\frac{d}{ds}\left(\frac{s}{s^2+\omega^2}\right)
  • Por regla del cociente:

    L[ t cos⁑(Ο‰t) ]=βˆ’(s2+Ο‰2)(ddss)βˆ’s(dds(s2+Ο‰2))(s2+Ο‰2)2=s2+Ο‰2βˆ’2s2(s2+Ο‰2)2=s2βˆ’Ο‰2(s2+Ο‰2)2\begin{align*} \mathscr{L}[~t\,\cos(\omega t)~]&=-\frac{(s^2+\omega ^2)\left(\frac{d}{ds}s\right)-s\left(\frac{d}{ds}(s^2+\omega ^2)\right)}{\left(s^2+\omega ^2\right)^2}\\ &=\frac{s^2+\omega^2-2s^2}{(s^2+\omega^2)^2}\\ &=\frac{s^2-\omega^2}{(s^2+\omega^2)^2} \end{align*}